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Abstract. The two-dimensional tricritical k ing  model with an order parameter perturbation 
is studied using two different lattice models. The mass spectrum is found to be the same 
as in the 2D Ising model with a magnetic field. Results for the scaling functions are in 
agreement with universality and for the lowest mass a relationship with the scaling function 
of the Ising model is observed. The numerical results do not support a recent proposal of 
Dotsenko on the dynamical generation of extra terms in the perturbative calculation of 
scaling functions. 

1. Introduction 

The hypothesis of conformal invariance has led to a considerable improvement in the 
descriptibn and understanding of two-dimensional critical phenomena (for a review, 
see [ 11). Results include the exact determination of the central charge, critical exponents 
and correlation functions for numerous physical systems. However, a complete under- 
standing of a critical point should also include the universal properties of the scaling 
region, where the correlation length is finite but much larger than any microscopic 
scale. In particular, one would like to calculate universal combinations of the bulk 
scaling amplitudes. This is particularly interesting for the distinction of universality 
classes, since critical amplitudes may vary over a much wider range of values than 
critical exponents (for a review, see [2]). For example, it is possible, using Zamolod- 
chikov’s [3] c-theorem, to express the universal scaling amplitude ratio f ‘ ” [ 2  in terms 
of the central charge and critical exponents [4], where f s )  is the singular part of the 
free energy density and 6 is defined by the second moment of the two-point correlation 
function of the perturbing relevant field. As another example, we mention the calcula- 
tion of the perturbative corrections due to a relevant operator for the central charge 
of a system flowing between two renormalization group fixed points [5]. 

Recently, it was suggested by Zamolodchikov [6], that if the critical point Hamil- 
tonian is perturbed by a suitably chosen relevant scaling field, the off-critical system 
may possess non-trivial integrals of motion and might even be integrable. Integrals of 
motion of the form : T s ( z )  :, where T ( z )  is the energy momentum tensor and s an 
integer, are found for the perturbing fields q I 2 ,  q21 and cpI3 where the indices are the 
usual Kac labels. By a bootstrap approach, the complete factorized S-matrix can then 
be obtained. The ratios of the masses of the particles contained in the massive particle 
field theory correspond to the ratios of several correlation lengths (e.g. spin-spin or 
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energy-energy) in a statistical model. The class of models which can be treated by this 
method includes the 2~ Ising model in a magnetic field and has led in this case to the 
prediction [6,7] for the masses mi : 

7T 
-2  COS-= 1.618.. . m2 _- 

m1 5 
7T - 2 COS -= 1.989 . . . . m3 

m1 30 
_.- 

There are further stable states above the continuum starting at 2ml.  
The above conjecture for the Ising model was checked and confirmed by Hamil- 

tonian spectrum calculations [8]. This is a non-trivial check that the assumptions 
involved in (1.1) appear at least to some extent to be satisfied in statistical systems. 
This check is further confirmed by correlation function computations [9] and the 
spectrum calculations were also repeated [ 101. Similar predictions exist for example 
for the tricritical Ising model with thermal (q12) or vacancy concentration (al3) 
perturbations [ l l ,  121 and were checked using the Blume-Cape1 model [13]. (Non- 
minimal models were studied as well, see for example the Yang-Lee edge singularity 
[ 141 or the Ashkin-Teller model with thermal perturbations [ 151.) The exact S-matrices 
have been obtained for these types of massive field theories and are shown to have 
the same Feynman graph expansion as extended Toda field theories [ l l ,  12,16-221. 
(For example, the Ising model with a magnetic field corresponds to the E8 Toda field 
theory.) Dispersion relations were also studied for the Ising model perturbed with a 
magnetic field (q l2  = (p22) [8] and for the tricritical Ising model perturbed with (p12 and 
(pl3 [13] and found to be consistent with those of a free massive particle as it is expected 
from the approach leading to (1.1) [6,7]. 

Interest has mainly concentrated on the perturbing operators (p12,  (p21 and (p13 since 
these are the only ones for which non-trivial integrals of motion are known to exist. 
In particular, the effects of perturbing with q13, which is the least relevant operator 
for the conformal minimal models, has received considerable attention (e.g. 
[ 11,12, 17,231 and references therein). Here we want to study the other extreme case, 
that is perturbations with the operator ( P ~ ~ ,  which is the most relevant operator in 
minimal models and corresponds to order parameter perturbations. However, the 
perturbative approach is plagued by I R  divergencies which for the perturbing field Q~~ 

already show up in first order. We shall therefore use a non-perturbative approach, 
Here we shall consider the simplest non-trivial example, namely the tricritical Ising 

model (in the usual Ising model, one has (p12 = (p22). Examples of tricritical behaviour 
may occur in metamagnets or multicomponent fluid mixtures. For a detailed review 
on tricritical behaviour see [24]. We shall study two different lattice realizations of 
this universality class. 

1. The RSOS model [25,26] using the transfer matrix. The transition between the 
regimes 111 and IV [25] shows (multi-)critical behaviour. A convenient formulation 
relates these models to Dynkin diagrams of simple Lie algebras, where the tricritical 
Ising model corresponds to the algebra A4 [27]. 

2. The Hamiltonian limit version of an Ising metamagnet, described by the quantum 
Hamiltonian 

N 

H = - C [ ( t d  ( n )  - U' ( n ) d  ( n  + 1) + vx( n )ax (  n + 2) + ha" (n)) 
f l = l  

+ h,(-l)"a"(n)] (1.2) 
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where C T ~  and v Z  are Pauli matrices and periodic boundary conditions are understood. 
The variable t acts like a temperature, while h parametrizes the competition between 
the ferromagnetic and the antiferromagnetic ground states and h, is the symmetry- 
breaking staggered field coupled to the order parameter. The quantum Hamiltonian 
H can be obtained in the usual way from the transfer matrix T=exp(-.rH) of an 
isotropic metamagnet [28-301 by taking the extreme anisotropic limit along with 7 + 0. 
This correspondence is well established and is reviewed in [ 3 1 ] .  

Using the RSOS model has the advantage that the location of the tricritical point 
is known exactly. Explicit expressions exist for the perturbing operators qnn of the 
Kac table [ 2 7 ] .  On the other hand, using the Ising metamagnet offers more intuition 
on the correspondence with real systems and also allows us to consider perturbations 
which cannot be written in terms of the ‘diagonal’ operators qnn, but has the disadvan- 
tage that the tricritical point ( t , ,  h , )  has to be found. In any case, using two realizations 
of the same universality class offers the possibility to check explicitly for the universality 
of the scaling functions and we shall use this below. 

The paper is organized as follows. In section 2 the finite-size scaling calculation 
of the desired scaling amplitudes is described. We shall find the mass ratios to be the 
same as for the 2~ Ising model in a magnetic field. Scaling functions are obtained and 
checked for universality and relationships between the non-universal normalization 
constants appearing in the scaling form are discussed. We shall also observe a relation 
between the scaling functions of the spin-spin correlation length of the Ising and the 
tricritical Ising model. Section 3 deals with perturbative ideas for the calculation of 
integrals of motion and scaling functions. In particular, we examine a recent proposal 
of Dotsenko [32 ]  which attempts to include input from the operator product expansion 
and claims that the perturbation series might also contain additional, dynamically 
generated, contributions. A comparison with our numerical results, however, does not 
appear to support this idea. Conclusions are given in section 4. 

2. Finite-size scaling calculation 

Finite-size scaling techniques are common to calculate critical points and critical 
exponents of (multi-) critical points and become particularly powerful in the Hamil- 
tonian limit since the sparsity of the matrices to be diagonalized is increased as 
compared to the usual transfer matrix (for a review and the combination with conformal 
invariance, see [ 3 1 ] ) .  

Consider the phase diagram of the king metamagnet, as shown in figure 1. The 
determination of the tricritical point proceeds along the standard finite-size scaling 
method of calculating the two lowest gaps m,( N ) ,  m2( N )  for various numbers of sites 
N and extrapolating towards N + CO the solutions of the equations 

N m , ( t ,  h, N ) = ( N + 2 ) m 1 ( t ,  h, N + 2 )  
Nm,(t, h, N ) = ( N + 2 ) m 2 ( t , h ,  N + 2 )  (2.1) 

as described in the literature (e.g. [28-30,331).  We find for the location of the tricritical 
point 

t ,  = 1.0940(9) h ,  = 1.8794(15). (2 .2 )  
At the tricritical point, the spectrum of H can be decomposed into the unitary 

irreducible representations of the Virasoro algebra of central charge c = &,. The applica- 
tions of conformal invariance to the Ising metamagnet (1.2) requires the correct 
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Figure 1. Phase diagram of the Ising metamagnet (1.2). The full line is in the 2 D  king 
universality class, while the broken line is a first-order transition. The tricritical point 
separating these lines is marked by a circle. 

normalization of the Hamiltonian: H + {-‘H, where { can be fixed by standard 
arguments [34]. The best convergence is obtained, in our case, from the inverse 
energy-energy correlation length m2 and we find 

5 = 4.3 * 0.1 (2.3) 
for the Ising metamagnet, while the normalization problem, which reflects a certain 
arbitrariness in taking the Hamiltonian limit [3 11, does not arise in the isotropic transfer 
matrix of the RSOS model. The operator content of the tricritical Ising model can be 
obtained using the Hamiltonian limit of the Blume-Cape1 model [13,33,35]. There 
are four relevant scaling fields which correspond to the fields arising in the scaling 
renormalization group description of a tricritical point [24] as follows: 

cp22 x = A  40 order parameter 

(PI2  x = ’  5 temperature 

Q 2 l  X = ’  8 ‘cubic’ field 

(PI3 x = 6  5 non-ordering field 

where x is the scaling dimension. (More precisely, the ‘true’ temperature couples to 
a linear combination of cpL2 and c p I 3 ,  see [13,33].) 

Now, consider the conformally invariant theory, given by the critical point Hamil- 
tonian H,, perturbed by some relevant scaling field cp 

H = H,+A cp(z, 2 )  d2z. t2.4) 

Consider cp = cp22 as a perturbing field. Then the coupling A is the staggered field 
I 

h, for the Ising metamagnet (1.2). Define the scaling variable 

p = h,NY ( 2 . 5 )  
where y = 2 - x = 77/40. The masses m, are calculated from the eigenvalues E, of the 
Hamiltonian 

m, = 6;’ = E, - Eo (2.6) 
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where ti is the correlation length of the ith scaling field where 5, is the spin-spin 
correlation length, t2 the energy-energy correlation length and so on. In figure 2 ,  we 
show the first few mass ratios ri = m i + J m l  as a function of p. Clearly, the ri depend 
only on p and not on h, or N separately. The critical point corresponds to the limit 
p + 0, that is P N. Conformal invariance predicts for p = 0 [33 ,35 ]  

r,  = 2: r 2 = 1 1 $  r, = 16 r, = 27: . . .  (2 .7)  
which are reproduced in figure 2 .  We now consider the other extreme case p + CO, that 
is t1 N. In this limit, a description of the system in terms of a massive field theory 
should be reasonable and the mi become the masses of the particles in the field theory. 
Their ratios are related to the universal ratios of the scaling amplitudes Bi of the inverse 
correlation lengths 5;’ = B,hb”’ via mi/  m ,  = B i /  B, . Computationally, one has to get to 
this limit using finite-size calculations by a double extrapolation procedure. Two 
methods have been tried in practice. 

1. Take first the limit N + CO with h, fixed and extrapolate afterwards back towards 
h,+O. This technique was applied in the ZD Ising model [8]. 

2.  Take first the finite-size scaling limit N + CO, h,  + 0 and p fixed and extrapolate 
afterwards for p +CO. This method was used in the Blume-Cape1 model [ 131. 
We think that the first method is preferable, since it occurs quite often for larger values 
of p that the finite-lattice data no longer form monotonous sequences (see the finite-size 
data in [ 1 3 ] )  which renders the extrapolation towards N +  CO ( p  fixed) quite difficult. 
We have not encountered this problem using the first method. Finally, it was also tried 
[ 101 to fit the finite-size data to the first few terms of the theoretical scaling expression 
where the finite-size scaling correction exponents are known from conformal invariance. 

I 
9 I 

I 

13 
1 1  I I I I I 
1 5 20 50 100 150 250 

li 
Figure 2. Mass ratios r, = m , + , / m ,  as a function of 1 = h,N7’/40 as calculated for the k ing  
metamagnet (1 .2) .  The symbols refer to the different values of h,: 0.03, A 0.08, A 0.12, 
0 0.2,. 0.5, V 0.6, 0.9. The broken line marks the lower edge of the continuum starting 
at r, = 2. The full curves are merely guides to the eye. 
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Although this method seems to work for the 2~ Ising model, it is probably too dangerous 
in our case because of possible cross-over effects due to the nearby 2~ Ising fixed point 
and we d o  not consider this technique any further. 

To illustrate the convergence of our finite-size data, we display in table 1 two typical 
examples. Choosing the values of h, needs some care since they have to be large 
enough to meet the condition 6 e N but if h, becomes too large, the masses eventually 
obtained may be affected by sizeable correction-to-scaling terms. The extrapolation 
was done with the BST algorithm (see [36,37]) and we conclude from the results of 
the two models 

m J m ,  = 1.62(1) m J m ,  = 1.98(2) (2.8) 

in the limit p +CO. Surprisingly, our numerical results agree with those obtained for 
the Ising model in a magnetic field (see (1.1)). We return to this point below. 

Table 1. Finite-size data for the mass ratios r, = m , + , / m ,  for the Ising metamagnet calcu- 
lated at t = 1.094 and h = 1.8794 for two values of the staggered field h,. 

h, = 0.6 h, = 0.9 

N r1 ‘2 r 3  r l  f-2 r 3  

8 1.40472 1.702 61 2.120 89 1.406 15 1.749 39 1.88040 
10 1.418 26 1.906 02 2.03458 1.53403 1.823 58 2.160 11 
12 1.525 01 1.847 87 2.19237 1.591 90 1.881 80 2.167 20 
14 1.59241 1.87901 2.172 56 1.602 55 1.924 17 2.155 27 
16 1.613 12 1.92502 2.20031 1.604 33 1.938 33 2.106 51 
18 1.618 18 1.94681 2.16531 1.604 65 1.943 90 2.074 02 

Note that only the two lowest mass ratios in figure 2 can be followed continuously 
from their p = 0 value towards p +CO. All other ratios show level crossings where the 
corresponding states mix. Studies on the Ising and the Ashkin-Teller model indicate 
that mixing of states seems to occur generically between those levels which in the 
p + c13 limit are in the continuum part of the mass spectrum, while the discrete levels 
do not undergo mixing. This topic will be discussed in detail in a separate paper [38]. 

Further, the deep minima in the ratios ri can be explained in the usual way [8]. 
Introduce the scaling functions Gi 

mi = ht”Gi(p) (2.9) 

G i ( p )  = 2 7 r ~ ~ p - ” ~  + H i ( p )  (2.10) 

and the reduced scaling functions H i ( p ) .  The first term in (2.10) follows from conformal 
invariance. In figure 3, we plot H I ( p )  and H 2 ( p )  as obtained from the RSOS model 
and observe that they become small in the p + 0 limit. As will be further discussed in 
section 3, for a symmetry-breaking field perturbation theory implies H i ( p )  - 

Since we have two realizations of the same universality class at our disposal, we 
can check for the universality of the finite-size scaling functions. We expect the finite-size 
scaling form [39], written down for the metamagnet in a staggered field 

p Z - l ’ y + .  . . . 

(2.11) 
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0 5 10 
!J 

Figure 3. Reduced scaling functions H , ( p )  and H 2 ( p )  for the two lowest gaps in the A, 
RSOS model. The symbols correspond to the following values of the coupling A :  0.02, 
0 0 . 0 3 ,  0 0.06, W 0.10, A 0.20, U 0.30, and p=AN77'40 .  

where Si is a universal function and all information about the specific system is 
contained in the metric constant C2 (and in the corrections to (2.11)). Including the 
other relevant scaling fields would introduce additional metric constants, one for each 
additional scaling field [39]. In particular, there is no non-universal prefactor. Before 
applying (2.1 1) to the Hamiltonian limit, however, the Hamiltonian must be renormal- 
ized correctly. 

In fact, the scaling functions for the metamagnet and the RSOS model are the same 
and one has only to rescale their arguments as shown in figure 4. We find from the 
lowest mass 

p = C,(metamagnet)/C,(Rsos) = 17.0k0.3. (2.12) 
Finite-size scaling can be used to relate p to the normalization of the quantum 
Hamiltonians, as we now show. Consider the critical point Hamiltonian H, perturbed 

P 
Figure 4. Comparison of the finite-size scaling functions G, for the A, R S O S  model (A) 
and the Ising metamagnet ( 0 ) .  The scaling variable plotted corresponds to the lsing 
metamagnet and p = 17. 
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by h4, where 9 is some relevant operator. We can assume that 4 is normalized to 
unity, e.g. from its critical two-point correlation function. We take H ,  to be correctly 
normalized so that its spectrum has integer spacing in terms of 2rr/Er. In general, the 
system is not yet normalized and we have to work with the (quantum) Hamiltonian 

H = y ( H c +  h+) = yHc+ h"4 (2.13) 

where h" = yh. Consider two re_aliz_ations of the same universality class characterized 
by triples ( y ,  h", cz) and ( y ' ,  h', Ci), Since the lowest mass, for example, computed 
from both Hamiltonians corresponds to the same physical quantity, the correlation 
length [;I, we can write 

5;' = yN-'s,(E,h"N') = y%-'S,(C;ff" j) .  (2.14) 

We rescale and with the notation S,(x) = x'/'S",( l / x )  we have 

y(C2h")lWI(1/c2ffNy) = y ' ( ~ ~ h " ~ ) l / ~ ~ ~ ( l / C ~ h " r ~ ' ) .  (2.15) 

However, in the limit p = hNY + CO, S",(O) is a universal number, independent of y and 
y' and also independent of the normalization of 4. Thus, defining the metric constant 
C, with respect to the field h which couples to the correctly normalized field 4, rather 
than h", we have for the ratio p of the two metric constants 

P = (Y/ (2.16) 

How does this work out numerically? Since the A4 RSOS model is by construction 
already completely normalized [27], from (2.12) and (2.16) we have that the Ising 
metamagnet Hamiltonian (1.2) should be normalized by a factor y - l =  4.36 * 0.04 which 
agrees well with our previous finding 5 = 4.3 * 3.1. A second check is provided by the 
2~ Ising model with an anisotropy in spin space and perturbed with the energy density. 
In that model the exactly known scaling functions only depend on the variable 2/77 
( z  = ( t ,  - 1)N, y = l ) ,  in agreement with 5 - 77, where 7 parametrizes the anisotropy 
[40]. Besides looking at the scaling functions directly, this argument provides an 
additional test of universality. 

Our result can be rephrased to the statement that C2yY is universal. Although we 
restricted the discussion to the order parameter perturbation, the argument can be 
repeated for any relevant scaling field. This implies that knowing one of the metric 
constants fixes all the others, up to normalization of the scaling fields. 

In principle, one could* also change the definition of h by an arbitrary factor, that 
is, one could work with h = c u f f =  cryh instead. The influence of a can be separated 
from that of the overall normalization of the Hamiltonian, however, since the ratio of 
the masses m i / m l  in the p + CO limit depends by the above argument leading to (2.16) 
only on the ratio a ' / a  of the two realizations since s,(O) does not depend on the 
normalization of 4. As an example, consider again figure 4. Note that the Ising 
metamagnet data were obtained from the un-normalized Hamiltonian (1.2), but we 
have already seen that this is not important in the p +CO limit. Since in the p + M 

limit, the scaling functions are identical, we have that a ' / a  = 1 and since it is known 
that the RSOS operator has a = 1 [27], we conclude that the staggered magnetic field 
is equal to the conformal field (022 (up to finite-size corrections). 

Of course this discussion does not imply that the non-universal metric factors have 
disappeared; we have merely traced them back to choosing a proper normalization of 
the scaling fields. 
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We now turn to a comparison of the scaling functions between two different 
universality classes. Since we have already seen that in the p + a3 limit, the mass ratios 
of the tricritical Ising model are equal to those of the usual Ising model, it is tempting 
to ask whether there are more similarities. Scaling functions for the usual Ising model 
were already computed from the un-normalized quantum Hamiltonian [ 81 

N 

H =  - { t I a x ( n ) + - a Z ( n ) a Z ( n + l ) + h , a ’ ( n ) } .  
n = 1  

(2 .17)  

The critical point is at t ,  = 1, h ,  = O  and the appropriate scaling variable is 

p I  = h I N 1 s / 8 .  (2 .18)  

Consider the lowest mass m ,  for both models and define the quantity & ( p )  via 

m ,  = 2 7 r x N - ’ +  h l ’ Y L 1 ( p )  (2.19) 

where one has h = h,( h J ,  x = &$,) and y = y(g) for the Ising (tricritical Ising) model, 
respectively and p is the corresponding scaling variable. For the tricritical Ising model, 
L ,  is equal to HI, but it is not for the Ising model. In figure 5, L l ( p )  is displayed for 
the two distinct universality classes. Restricting our attention to values of p I  larger 
than ‘2, we observe that at least for the range of p considered, these two functions 
appear to be the same, provided the scales of their arguments are chosen properly. 
We find 

(2 .20)  

We did not find a similar relationship for the higher masses and even for L , ,  the 
observed relation does not hold for small values of p. 

This observation is stronger than the usual universality between different members 
of the same universality class. Rather, we have an example for a group of systems 
which at their critical points p = 0 are in different universality classes but, when p is 
increased, essentially losing their memory on the critical point they started from. This 
observation yields additional evidence that indeed both the 2~ Ising and tricritical 
Ising models perturbed by (p22 (the order parameter) should be described by the same 
massive particle field theory. In particular, this means that the bulk scaling amplitudes 
Bi of 6;’ = Bib"' are the same in the two models, with the normalization of h fixed 

p’  = C,( king)/  C,( RSOS) = 4.49 k 0.09. 

7 -  I 

2 ;  p’ I 
I .  

1 

I I 1 I 
0 5 10 15 20 

P 
Figure 5. Comparison of the scaling functions L , ( p )  of the lowest masses for the Ising 
model ( 0 )  and the tricritical Ising model ( 0 ) .  The scaling variable plotted is w ,  and p ‘ =  4.49. 
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as discussed above. At this point, we also mention that preliminary calculations for 
the AS RSOS model (corresponding to the tetracritical Ising model) perturbed with cp22 
also seems to yield mass ratios rl = 1.62, r2=  1.99 and it is suggestive to conjecture 
that this holds for the other A,, RSOS models as well. 

To summarize this section, we have given evidence that the tricritical Ising model 
in an external field should be described by the same theory as the 2~ Ising model in 
a magnetic field (see (2.8) and figure 5 ) .  Our results for the scaling functions (figure 
4) are in agreement with universality and this serves as an additional check against 
computationa! errors. 

3. Perturbative calculations and ideas 

Having examined the 2~ tricritical Ising model numerically, we now try to compare 
our results with perturbative arguments. First, we shall try to find integrals of motion 
following [7]. Afterwards, we shall examine a proposal of Dotsenko [32,41] for the 
perturbative calculation of scaling functions. 

3.1. Integrals of motion 

We begin by considering the integrals of motion of the perturbed Hamiltonian 

(3.1) 

Then, using the assumption that the space of states of the perturbed theory has the 
same structure as the one for A = O  (we ignore the possibility of level crossings, see 
[38]), one can show that the perturbed equations of motion only pick up a finite 
number of terms and that it is normally sufficient to consider only first-order perturba- 
tions (under mild technical conditions, which are always satisfied for order parameter 
perturbations). The existence of integrals of motion ( I M )  of the form Ts( z, Z) = : T s (  z, 2 ) :  
can then be demonstrated by a simple counting argument [7,12]. Define the numbers 

and &s by 
m c 4% = (1 - 4)4c’24xo(4)  + 4 

s = o  

cc 

qA q S k  = (1 - 4)4c’24x&) 
5 = O  

where x0(q) and x c ( q )  are the Virasoro character functions of the identity operator 
and the perturbing operator cp of conformal weigh: A in (3.1), respectively and c is 
the central charge. Now, if one has for some s that As+,  3 &s + 1, then there does exist 
at least one I M  of the given form [7]. 

While this counting argument establishes the existence of non-trivial integrals of 
motion for the perturbations p12,  (p21 and V13 [ l l ,  121, it Coes no,’ tell us anything on 
the pzz perturbation. In table 2, we list some values for A, and as for odd values of 
s (since there is no charge conjugation in the tricritical Ising model, there can be no 
I M  with s even). The only recognized conserved quantity off the critical point has spin 
s = 1, which corresponds to energy-momentum conservation. 
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Table 2. Dimensions of characteristic spaces for the identity operator and the order 
parameter, corresponding to the conformal fields p,, and pz2. 

S 1 3 5 7 9 11 13 15 17 19 21 23 

A,,, 1 1 2 3 4 6 9 12 18 25 34 49 
6 s  0 1 2 3 5  8 12 19 28 40 59 84 

In order to control the possibility that the counting argument might hide an existing 
IM,  we checked the s = 7 case explicitly, since s = 7 corresponds to the first non-trivial 
I M  in the ZD Ising model with a magnetic field. By analogy with the procedure for the 
fields (pI2 ,  (pZ1 and q I 3  [42], one can show that the primary field (pz2 satisfies the equation 

4A+ 12 
4A 4A+15 2A+3 

L-, L-, +- 
3A+9 (3.3) 

where the Ln are generators of the Virasoro algebra and A = A 2 ,  from the Kac table 
[l]. Using previous results [43], it is already clear that there will be no I M  for neither 
s = 3 nor s = 5. We are looking for a quantity T8 in the conformal tower of the unity 
operator, such that LOT8 = 8 T8 and satisfying the conservation law 

a?T8=dzQ6 (3.4) 
with Q6 some local operator. As can be read from table 2, there is a three-dimensional 
space from which Ts could be constructed. A convenient basis is 

T c ’  = L t 2 1  T r ’ =  L?,L_,I Ti3’ = LT41 (3.5) 
where I is the unit operator. The effect of ai can be calculated using known techniques. 
One can show [6] that there exists a set of operators Dfl such that di = ADo and 

(3.6) 

Then it follows 
d,T;”= -A  ( A  - 1){4(A2 - 5A+9)L-j+ 12(A - 2) L-,L-,+ 12L-3LZ2 

+ 12( A -3)L-lL-4}(p22 
a,Tr) = -A ( A  - 1){4(4A + 19) L-j  -8 L-3L-4- 12L-sL-2}(~22 (3.7) 

diTg’= - A ( A -  l){60L_,}(pz2 

where we omitted all terms which are just total derivatives d z ( ,  , ,) of local operators. 
While the term proportional to L-3L?2(p22 can be eliminated by (3.3), there remains a 
three-dimensional space and a conservation law can only occur for those values of A 
where the coefficient matrix of ai in the space spanned by (3.7) becomes singular. This 
leads to the equation 

4A3 - 1 16A2 + 31A + 108 = 0 (3.8) 

(3.9) 

which has the solutions 

A2 = 1.1331 . , , A, = 28.6971 . . . A1 = -0.8303 . . . 
which means that there is no unitary model such that a (022 perturbation can be relevant 
and have at the same time an I M  with s = 7 (for the Ising model, the identity p12 = pz2 
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provides an additional constraint which guarantees the existence of an I M ) .  Looking 
at table 2, there do not seem to be too many prospects in finding an IM for yet higher 
values of s. 

Although we did not succeed in finding a non-trivial I M ,  the numerical results for 
the mass ratios and the finite-size scaling functions suggest that also a systems perturbed 
with (pZ2 might be integrable as well, but one probably should look for a more general 
ansatz in the construction of I M S .  If we knew that the S-matrix of the tricritical Ising 
model perturbed by pCzZ factorized, the two identical mass ratios (2.8) would be enough 
(see [6]) to establish the identity of the entire S-matrices, while the relationship of the 
scaling functions (figure 5) would merely fix the ratio of the coupling constants (as 
can be seen from Liischers asymptotic expansion for the masses on the a finite lattice 
[44]). At present, it is an open question why both the Ising and the tricritical Ising 
models in a symmetry-breaking magnetic field have apparently the same mass spectrum. 

3.2. Scaling functions 

We now turn to a different question and consider the possibility of calculating (reduced) 
finite-size scaling functions from perturbation theory around the conformal invariant 
critical point. For the 2~ Ising model with a thermal perturbation, scaling functions 
were calculated successfully by the perturbative approach for the correlation func- 
tions in the infinite 2~ plane [41] as well as for the correlation length in the strip 
geometry [45]. 

Recently, Dotsenko [32] has suggested an extension of his technique [41] to include 
magnetic perturbations in the Ising model. In order to obtain a scaling function (of 
the two-point correlation function) which also contains non-analytic terms in the 
scaling variable as it is required from dimensional counting, he suggests that the 
perturbed Hamiltonian might pick up an extra term and reads in the case of the Ising 
model [32] 

H = Hc+ hu+Ah*e  (3.10) 
because the Ising model order parameter U produces the energy density E in the 
operator product expansion 

uu-l+E (3.11) 
where the exponent Sl, is fixed by dimensional analysis [32] 

(3.12) 

for the Ising model and A is a free (probably model-dependent) parameter. 
Let us check this idea of a possible dynamical generation of additional terms in 

the Hamiltonian. To do so, we calculate the finite-size scaling functions Gi of the 
lowest masses in the Ising model from (3.10) on the strip. The calculation is completely 
parallel to the one done in the infinite plane [32]. Since the first-order term from o 
vanishes and 31c, < 2, the lowest orders of Gi are determined by the operator E .  The 
calculation was already carried out by Reinicke [45], and we obtain, with the normal- 
ization of H chosen as in (2.17) 

2 
4 ~ y ; ~ ” ~ + - A ~ p ~ ” ~ + 0 . 6 4 2 4 2 2 p ~ ~ / ‘ ~ + .  . , 

T 
(3.14) 
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for the two lowest masses where 5 is the Riemann zeta function. Similarly, for the 
tricritical Ising model we write in the same spirit 

H =  H,+ha+Ah*&+A'h*'u (3 .15)  

where A, A' are free parameters and from dimensional analysis as above 

2 - ~ ,  32 
- + I = - - -  2-x, 77 

- 2 - ~ ,  72 (3.16) 

as motivated by the operator product expansion [42] (irrelevant operators are dis- 
carded) 

(3.17) 

where U is the vacancy operator (corresponds to pl3). Using the known operator 
product expansion coefficients for the tricritical Ising model [46,47] we obtain 

aa - 1 + & + U 

-40/77+9.403A1y-a!77_t 1 . 5 0 1 A P 3 2 / ? 7 + o ( ~ ' 2 p 2 4 / 7 7 ,  I l W 7 ) )  

(3.18) 

(3.19) 

where 5 is the normalization factor of the Ising metamagnet. With these expressions 
in hand, we now compare with the numerical results for the scaling functions. We note 
the following. 

1. The presence of the free parameters A, A', which cannot be absorbed into a 
renormalization of the scaling variable, is in contradiction to the usual expectation of 
universality (see equation (2.11)) of the scaling functions [39]. The universality of the 
finite-size scaling function in the 2~ Ising model with a magnetic field (and for the 
three-states Potts model as well) has been already checked earlier [48] and we did so 
in section 2 (see figure 4) for the tricritical Ising model. The numerical evidence for 
universality already suggests that the extra terms proposed can at most make a very 
small contribution to the scaling functions. 

2 .  For a detailed quantitative check, we consider the scaling functions of the Ising 
model. To make such a comparison meaningful, the scaling variable must be small 
enough to guarantee the applicability of the perturbative scheme employed. This will 
be the case if the correlation length & is still large compared with the lattice size and 
this implies in turn that the mass ratios r, should be close to their values at = 0, 
known from conformal invariance. This condition is satisfied for the lattices we use 
here up to about p I = 0 . 2 .  However, since the reduced scaling functions H, we are 
interested in contribute less than 1% to the masses for these values of p I ,  finite-size 
corrections must be taken into account. We thus obtain the reduced scaling functions 
not from (2.10), but rather from [31,40] 

(3.20) 

In figure 6, we show the reduced scaling functions Hi for the Ising model. We note 
that scaling is well satisfied which means that any further corrections to finite-size 
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0.45 I / -  

HI 

6 

P 
Figure 6. Reduced scaling functions H, (upper curve) and H ,  (lower curve) for the Ising 
model as obtained from (3.30). The full curves are the second-order perturbation predictions 
(3.13), (3.14) with A=O. The symbols denote different values of h , :  0 310-4-810-4, 0 
0.0015, A 0.004, 0.007. 

scaling are still negligible. The full curves are calculated from perturbation theory with 
A = 0 (see (3.13,3.14)), which is in good agreement with the numerical data for p I  6 0.3. 
If p l  is getting larger, the higher-order terms must be taken into account. We conclude 
that if the terms proposed by Dotsenko are present at all, the coefficient A must be 
very small. We find an upper bound for the Ising model of the order A < 3 x 
Analogously, for the tricritical Ising model we have already from figure 3 an upper 
bound A’< lo-*. We also recall that Monte Carlo data for the Ising model correlation 
function do not seem to reproduce the corresponding prediction of Dotsenko either [9]. 

3. For moderately large values of p I  (that is about 0.6 s pI s 2) the data are well 
described by (see figure 4 in [SI) 

m, = h I  8 / 1 5  ( 2  2 p ; 8 / 1 5 + B p 1 + . . .  (3.21) 

with B = 1.00*0.05. Similar results were also observed for the correlation function in 
the plane [49] but the previous remarks suggest that these simple expressions arise by 
numerical coincidence. 

4. We have seen that for larger values of p the scaling functions of the Ising model 
and the tricritical Ising model apparently are the same (see figure 5). It is not clear 
yet whether one can reproduce this scaling function relationship from conformal 
perturbation theory. Indeed, the explicit expressions given to lowest orders do not 
show any sign of similarity. 

In summary, our numerical results do not support Dotsenkos’ [32] proposal for a 
perturbative calculation of (finite-size) scaling functions. Rather, we find that conven- 
tional perturbation theory is completely sufficient to describe the scaling functions of 
the correlation lengths and there is no indication for the presence of additional, 
dynamically generated terms in the Hamiltonian. 

4. Conclusions 

The two-dimensional tricritical Ising model was studied in an external magnetic field 
close to the tricritical point. Although this kind of perturbation does not appear to 
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belong to the class of operators which are expected to lead to an integrable off-critical 
system, numerical calculations have given evidence that this system is described by 
the same massive field theory as the 2~ Ising model in a magnetic field. 

The finite-size scaling functions for the inverse correlation lengths were calculated 
and checked for universality. The form of the scaling functions does not support recent 
speculations [32] for the dynamical generation of universality-breaking terms of the 
perturbation series in perturbative calculations starting from the critical point. Rather, 
the conventional perturbation scheme reproduces well the numerical results of the 
scaling functions, both for thermal and magnetic perturbations. 

Finally, the very fact that a simple picture emerges for the most relevant perturbing 
operator possible in a minimal model, which is the hardest one to study in a perturbative 
fashion, indicates the eventual possibility of a considerable generalization of present 
attempts to explore the entire scaling region of 2~ conformally invariant critical points. 

Last, but not least, the techniques developed so far lead to the prediction of universal 
ratios of scaling amplitudes which are directly accessible for experiment. 
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